

Intrepid Astrophysics & Cosmology Simulations

Joseph P. Bernstein

High Energy Physics Division Leadership Computing Facility Argonne National Laboratory

Contributors: Paul Ricker (UIUC), Boyana Norris (MCS), Steve Kuhlmann (HEP), UC FLASH Center

> LANS Informal Seminar Argonne National Lab June 23, 2010

Topics to Discuss

Introduction to cosmology

 Pursuing answers via high performance computing simulations

Summary & conclusions

Image courtesy http://www.mcs.anl.gov

Expansion of the Universe

Composition of the Universe

Courtesy: http://hetdex.org

Fundamental Motivation

Discovering the evolution & ultimate fate of the Universe and determining what constitutes 95% of the Universe!

Dark Matter Dominates Galaxy Cluster Formation

Courtesy: http://w3.iihe.ac.be/icecube

Credit: Andrey Kravtsov

Cosmological Mystery

Observations show matter comprises only 25% of the Universe

What makes up the other 75%?

Towards An Answer: Evolution of a Sun-like Star

Image courtesy http://www.siprep.org/faculty/aokeefe

Towards An Answer: Thermonuclear Supernova Animation

Credit: European Southern Observatory

Source: http://www.eso.org/public/videos/eso0943b

BRIGHT!

The galaxy known as NCG 4526 is about 55 million light years away from Earth.

This means that the light from Supernova 1994D started traveling towards Earth ~55 million years before 1994!

SNe As Standard Candles

1+ z $\equiv \lambda_{obs}/\lambda_{emit}$ z $\equiv redshift$

 λ_{obs} = observed wavelength λ_{emit} = emitted wavelength NB. distance \propto func(z, Ω)

Distance modulus:

 $\mu = 5\log_{10}(d/10 pc)$

 $d = distance (1 pc = 3.09x10^{16} m)$

Distant SNe dimmer than predicted for a matter-only Universe! (originally discovered in 1998)

Dark Energy: Key to Understanding the Universe

Explanation: expansion of Universe is accelerating due to dark energy that behaves like the opposite of gravity

Just one problem: best model explaining dark energy is off by a factor of 10¹²⁰

Dark Energy Survey (DES)

DES will survey 5000 square degree of sky and provide new 500Mpixel CCD camera (DECam) for Blanco 4m telescope at the Cerro Tololo Inter-American Observatory (CTIO), Chile, in exchange for 525 survey nights over 5 years starting in 2011.

DE investigation via 4 independent probes:

- 1) Galaxy angular clustering
- 2) Weak gravitational lensing
- 3) Baryon acoustic oscillations
- 4) SN la distances

DES is expected to observe ~10⁸ galaxies & will obtain redshifts for the South Pole Telescope survey.

J. P. Bernstein - Cosmology Talk

Pursuing Fundamental Physics with Intrepid

- SN Ia explosion modeling
 - Argonne FLASH Center Others collaboration
 - simulate white dwarf detonation and explosion using FLASH code
 - seeking to understand SN Ia brightness from fundamental physics
- SN la radiative transfer
 - **7** PHOFNIX
 - Initial discussions with U. Chicago people have occurred
 - Argonne FY 2011 LDRD for non-LTE library development pending
 - Initial BG/P scaling by Daan van Rossum shows promise
 - **尽** SEDONA
 - Dan Kasen's code (Kasen, Thomas, Nugent 2006, ApJ, 651, 366 (2006)
 - → 2D test runs successfully performed on BG/P
 - Near ideal scaling for a minimally parallel case
- Computational cosmology
 - → simulate large scale structure of Universe with FLASH
 - pursuing BG/P optimization & scaling studies w\ Paul Ricker & Boyana Norris

3-D SN la Simulations

Buoyancy-driven Turbulent Nuclear Combustion

Credit: Brad Gallagher

Pursuing Fundamental Physics with Intrepid

- SN Ia explosion modeling
 - → Argonne FLASH Center Others collaboration
 - → simulate white dwarf detonation and explosion using FLASH code
 - seeking to understand SN Ia brightness from fundamental physics
- SN la radiative transfer
 - **7 PHOENIX**
 - Initial discussions with U. Chicago people have occurred
 - Argonne FY 2011 LDRD for non-LTE library development pending
 - ¬ Initial BG/P scaling by Daan van Rossum shows promise
 - - Dan Kasen's code (Kasen, Thomas, Nugent 2006, ApJ, 651, 366 (2006)
 - 2D test runs successfully performed on BG/P
 - Near ideal scaling for a minimally parallel case
- Computational cosmology
 - → simulate large scale structure of Universe with FLASH
 - pursuing BG/P optimization & scaling studies w\ Paul Ricker & Boyana Norris

Ultraviolet Brightness vs. Time

Blue Brightness vs. Time

Green Brightness vs. Time

Red Brightness vs. Time

Infrared Brightness vs. Time

Weak Scaling On BG/P (SEDONA: full replication)

Pursuing Fundamental Physics with Intrepid

- SN Ia explosion modeling
 - → Argonne FLASH Center Others collaboration
 - → simulate white dwarf detonation and explosion using FLASH code
 - seeking to understand SN Ia brightness from fundamental physics
- SN la radiative transfer.
 - **7** PHOFNIX
 - Initial discussions with U. Chicago people have occurred
 - Argonne FY 2011 LDRD for non-LTE library development pending
 - → Initial BG/P scaling by Daan van Rossum shows promise
 - **尽** SEDONA
 - Dan Kasen's code (Kasen, Thomas, Nugent 2006, ApJ, 651, 366 (2006)
 - → 2D test runs successfully performed on BG/P
 - Near ideal scaling for a minimally parallel case
- Computational cosmology
 - simulate large scale structure of Universe with FLASH
 - pursuing BG/P optimization & scaling studies w\ Paul Ricker & Boyana Norris

BG/P Test: 512^3 particles w/ hydro (6 refinement levels)

Active Work

- Radiative transfer: relaxing Local Thermo. Equilibrium (LTE) assumption
 - no existing codes can handle non-LTE assumption at HPC scale
 - Argonne FY 2011 LDRD for non-LTE library development pending (JPB PI)
- Computational cosmology
 - MUCH larger simulations needed
 - working on 1024^3-particle proof of principle problem
 - ultimate technical goal is 4096^3 particles and more
 - ¬ science: study voids in Universe − requires extreme force resolution
 - Boyana Norris working on optimization and OpenMP studies

Summary & Conclusion

- Dark energy: one of the most compelling modern physics problems
- March to precision cosmology demands HPC simulations
- ANL actively engaged on two fronts
 - supernova explosion modeling
 - z computational cosmology
- Many applications suitable to petascale and beyond
- ANL well positioned to maintain leadership roles w/ computational hires

